Accelerated simulated annealing with fast cooling

Michael Choi

The Chinese University of Hong Kong, Shenzhen Institute for Data and Decision Analytics (iDDA)

数据运筹科学研究院

Institute for Data and Decision Analytics

July 2019

 Simulated annealing is a stochastic optimization algorithm that has found huge success in statistics and image processing.

- Simulated annealing is a stochastic optimization algorithm that has found huge success in statistics and image processing.
- As we shall see, it involves studying the convergence of a non-homogeneous Markov chain/process.

- Simulated annealing is a stochastic optimization algorithm that has found huge success in statistics and image processing.
- As we shall see, it involves studying the convergence of a non-homogeneous Markov chain/process.
- Our focus today is an accelerated version of simulated annealing proposed by Choi.
- Reference: "An accelerated variant of simulated annealing that converges under fast cooling" arXiv:1901.10269

- Preliminaries
 - (i). Introduction
 - (ii). The Metropolis-Hastings Algorithm
 - (iii). Simulated annealing
- 2 Accelerated Metropolis-Hastings and simulated annealing algorithms
- 3 Summary

• Let π be a discrete or continuous distribution. Goal: Sample from π or estimate $\pi(f)$, where

$$\pi(f) = \sum f(x)\pi(x), \quad \text{or} \quad \pi(f) = \int f(x)\pi(dx).$$

• Let π be a discrete or continuous distribution. Goal: Sample from π or estimate $\pi(f)$, where

$$\pi(f) = \sum_{x} f(x)\pi(x), \quad \text{or} \quad \pi(f) = \int f(x)\pi(dx).$$

• **Difficulty**: At times it is impossible to apply classical Monte Carlo methods, since π is often of the form

$$\pi(x) = \frac{e^{-\beta H(x)}}{Z},$$

where Z is a normalization constant that cannot be computed.

• Let π be a discrete or continuous distribution. Goal: Sample from π or estimate $\pi(f)$, where

$$\pi(f) = \sum_{x} f(x)\pi(x), \quad \text{or} \quad \pi(f) = \int f(x)\pi(dx).$$

• **Difficulty**: At times it is impossible to apply classical Monte Carlo methods, since π is often of the form

$$\pi(x) = \frac{e^{-\beta H(x)}}{Z},$$

where Z is a normalization constant that cannot be computed.

• Idea of Markov chain Monte Carlo (MCMC): Construct a Markov chain that converges to π , which only depends on the ratio

$$\frac{\pi(y)}{\pi(x)}$$

Thus there is no need to know Z.

- Preliminaries
 - (i). Introduction
 - (ii). The Metropolis-Hastings Algorithm
 - (iii). Simulated annealing
- 2 Accelerated Metropolis-Hastings and simulated annealing algorithms
- 3 Summary

The Metropolis-Hastings algorithm

- In our talk today, we will focus on **continuous-time** Metropolis-Hastings algorithm.
- Two ingredients:
 - (i). Target distribution: π
 - (ii). Proposal chain with generator $Q = (Q(x, y))_{x,y}$.

The Metropolis-Hastings algorithm

Algorithm 1: The Metropolis-Hastings algorithm

Input: Proposal chain Q, target distribution π

- 1 (Generate the proposal): Given X_t , propose the next jump $Y_{t+s} \sim Q(X_t, \cdot)$ according to Q, say at time t+s
- 2 (Acceptance-rejection): Take

$$X_{t+s} = \begin{cases} Y_{t+s}, & \text{with probability } \alpha(X_t, Y_{t+s}), \\ X_t, & \text{with probability } 1 - \alpha(X_t, Y_{t+s}), \end{cases}$$

where

$$\alpha(x,y) := \min \left\{ \frac{\pi(y)Q(y,x)}{\pi(x)Q(x,y)}, 1 \right\}$$

is known as the acceptance probability.

The Metropolis-Hastings algorithm

Definition

The Metropolis-Hastings algorithm, with proposal chain Q and target distribution π , is a Markov chain $X = (X_t)_{t \geq 0}$ with generator

$$M_1(x,y) = \begin{cases} \alpha(x,y)Q(x,y), & \text{for } x \neq y, \\ -\sum_{y;\ y \neq x} M_1(x,y), & \text{for } x = y. \end{cases}$$

The Metropolis-Hastings (MH) algorithm

Theorem

Given target distribution π and proposal chain Q, the Metropolis-Hastings chain is

• reversible with respect to π , that is, for all x, y,

$$\pi(x)M_1(x,y) = \pi(y)M_1(y,x).$$

• (Ergodic theorem of MH) If P is irreducible, then

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t f(X_s) \, ds = \pi(f).$$

- 1 Preliminaries
 - (i). Introduction
 - (ii). The Metropolis-Hastings Algorithm
 - (iii). Simulated annealing
- 2 Accelerated Metropolis-Hastings and simulated annealing algorithms
- 3 Summary

• Goal: Find the global minimizers of a target function U.

- Goal: Find the global minimizers of a target function U.
- Idea of simulated annealing: Construct a non-homogeneous Metropolis-Hastings Markov chain that converges to π_{∞} , which is supported on the set of global minima of U.

- Goal: Find the global minimizers of a target function U.
- Idea of simulated annealing: Construct a non-homogeneous Metropolis-Hastings Markov chain that converges to π_{∞} , which is supported on the set of global minima of U.
- Target distribution: Gibbs distribution $\pi_{T(t)}$ with temperature T(t) that depends on time t

$$\pi_{T(t)}(x) = \frac{e^{-U(x)/T(t)}}{Z_{T(t)}},$$

$$Z_{T(t)} = \sum_{x} e^{-U(x)/T(t)}.$$

Proposal chain Q: symmetric

• The temperature cools down $T(t) \to 0$ as $t \to \infty$, and we expect the Markov chain get "frozen" at the set of global minima U_{min} :

$$\pi_{\infty}(x) := \lim_{t \to \infty} \pi_{T(t)}(x) = \begin{cases} \frac{1}{|U_{min}|}, & \text{for } x \in U_{min}, \\ 0, & \text{for } x \notin U_{min}. \end{cases}$$
$$U_{min} := \{x; \ U(x) \le U(y) \text{ for all } y\}.$$

Algorithm 2: Simulated annealing

Input: Symmetric proposal chain Q, target distribution $\pi_{T(t)}$, temperature schedule T(t)

- 1 (Generate the proposal): Given X_t , propose the next jump $Y_{t+s} \sim Q(X_t, \cdot)$ according to Q, say at time t+s
- 2 (Acceptance-rejection): Take

$$X_{t+s} = \begin{cases} Y_{t+s}, & \text{with probability } \alpha_t(X_t, Y_{t+s}), \\ X_t, & \text{with probability } 1 - \alpha_t(X_t, Y_{t+s}), \end{cases}$$

where

$$\alpha_t(x,y) := \min \left\{ \frac{\pi_{T(t)}(y)Q(y,x)}{\pi_{T(t)}(x)Q(x,y)}, 1 \right\} = \min \left\{ e^{\frac{U(x)-U(y)}{T(t)}}, 1 \right\}$$

is the acceptance probability.

Definition

Simulated annealing, with proposal chain Q, target distribution $\pi_{T(t)}$ and temperature schedule T(t), is a non-homogeneous Markov chain with generator at time t to be

$$M_{1,t}(x,y) = \begin{cases} \alpha_t(x,y)Q(x,y), & \text{for } x \neq y, \\ -\sum_{y; \ y \neq x} M_{1,t}(x,y), & \text{for } x = y. \end{cases}$$

Optimal cooling schedule

• The temperature schedule T(t) cannot be too slow: it may take too long for the Markov chain to converge

Optimal cooling schedule

- The temperature schedule T(t) cannot be too slow: it may take too long for the Markov chain to converge
- T(t) cannot converge to zero too fast: we can prove that with positive probability the Markov chain may get stuck at local minimum.

Optimal cooling schedule

- The temperature schedule T(t) cannot be too slow: it may take too long for the Markov chain to converge
- T(t) cannot converge to zero too fast: we can prove that with positive probability the Markov chain may get stuck at local minimum.

Theorem (Hajek '88, Holley and Stroock '88)

The Markov chain generated by simulated annealing converges to π_{∞} in total variation distance if and only if for any $\epsilon > 0$,

$$T(t) = \frac{c_{M_1} + \epsilon}{\ln(t+1)},$$

where c_{M_1} is known as the optimal hill-climbing constant that depends on the target function U and proposal chain Q.

- c_{M_1} is the highest hill one need to climb from a local minimum to a global minimum.
- A path γ from x to y: any sequence of points starting from $x_0 = x, x_1, x_2, \dots, x_n = y$ such that $Q(x_{i-1}, x_i) > 0$ for $i = 1, 2, \dots, n$.

- c_{M_1} is the highest hill one need to climb from a local minimum to a global minimum.
- A path γ from x to y: any sequence of points starting from $x_0 = x, x_1, x_2, \dots, x_n = y$ such that $Q(x_{i-1}, x_i) > 0$ for $i = 1, 2, \dots, n$.
- $\Gamma^{x,y} := \text{set of paths from } x \text{ to } y.$

- c_{M_1} is the highest hill one need to climb from a local minimum to a global minimum.
- A path γ from x to y: any sequence of points starting from $x_0 = x, x_1, x_2, \dots, x_n = y$ such that $Q(x_{i-1}, x_i) > 0$ for $i = 1, 2, \dots, n$.
- $\Gamma^{x,y} := \text{set of paths from } x \text{ to } y.$
- Elev(γ) := highest elevation along a path $\gamma \in \Gamma^{x,y} = \max \{U(\gamma_i); \gamma_i \in \gamma\}$

- c_{M_1} is the highest hill one need to climb from a local minimum to a global minimum.
- A path γ from x to y: any sequence of points starting from $x_0 = x, x_1, x_2, \dots, x_n = y$ such that $Q(x_{i-1}, x_i) > 0$ for $i = 1, 2, \dots, n$.
- $\Gamma^{x,y} := \text{set of paths from } x \text{ to } y.$
- Elev(γ) := highest elevation along a path $\gamma \in \Gamma^{x,y} = \max \{U(\gamma_i); \gamma_i \in \gamma\}$
- $H(x,y) := \min\{\text{Elev}(\gamma); \ \gamma \in \Gamma^{x,y}\}.$

Definition

$$c_{M_1} = c_{M_1}(Q, U) := \max_{x,y} \{ H(x, y) - U(x) - U(y) \}.$$

- Preliminaries
- 2 Accelerated Metropolis-Hastings and simulated annealing algorithms
 - (i). Definitions
 - (ii). Main results
- 3 Summary

• There are many variants of Metropolis-Hastings with improved convergence, e.g. lifting (Chen et al. '99), non-reversible MH (Hwang et al. 93, Bierkens '16), ...

- There are many variants of Metropolis-Hastings with improved convergence, e.g. lifting (Chen et al. '99), non-reversible MH (Hwang et al. 93, Bierkens '16), ...
- Today we will focus on a variant that we call M_2 (Choi SPA '19+, Choi and Huang JTP '19+)

Definition

With proposal chain Q and target distribution π , the accelerated MH is a Markov chain with generator M_2 given by

Definition

With proposal chain Q and target distribution π , the accelerated MH is a Markov chain with generator M_2 given by

$$\mathbf{M_2}(x,y) = \begin{cases} \max \left\{ \frac{\pi(y)Q(y,x)}{\pi(x)Q(x,y)}, 1 \right\} Q(x,y), & \text{for } x \neq y, \\ -\sum_{y; \ y \neq x} M_2(x,y), & \text{for } x = y. \end{cases}$$

• Recall that $M_1(x,y) = \min \left\{ \frac{\pi(y)Q(y,x)}{\pi(x)Q(x,y)}, 1 \right\} Q(x,y)$ for $x \neq y$.

We write $\langle f, g \rangle_{\pi} := \sum f(x)g(x)\pi(x)$ and $\lambda_2(M_i) := \inf_{\langle 1, f \rangle_{\pi} = 0; \ \langle f, f \rangle_{\pi} \leq 1} \langle -M_i f, f \rangle_{\pi}$ is the spectral gap of M_i for i = 1, 2.

Theorem (Comparison between M_1 and M_2)

Given target distribution π and proposal chain Q, M_2 is

• reversible with respect to π , that is, for all x, y,

$$\pi(x)M_2(x,y) = \pi(y)M_2(y,x).$$

- $\langle M_2 f, f \rangle_{\pi} \le \langle M_1 f, f \rangle_{\pi}$
- $\lambda_2(M_2) \geq \lambda_2(M_1)$.

We write $\langle f, g \rangle_{\pi} := \sum f(x)g(x)\pi(x)$ and $\lambda_2(M_i) := \inf_{\langle 1, f \rangle_{\pi} = 0; \ \langle f, f \rangle_{\pi} \leq 1} \langle -M_i f, f \rangle_{\pi}$ is the spectral gap of M_i for i = 1, 2.

Theorem (Comparison between M_1 and M_2)

Given target distribution π and proposal chain Q, M_2 is

• reversible with respect to π , that is, for all x, y,

$$\pi(x)M_2(x,y) = \pi(y)M_2(y,x).$$

- $\langle M_2 f, f \rangle_{\pi} \leq \langle M_1 f, f \rangle_{\pi}$
- $\lambda_2(M_2) \geq \lambda_2(M_1)$.

For more comparison results between M_1 and M_2 , see Choi and Huang '19+.

Accelerated simulated annealing

Definition

Accelerated simulated annealing, with proposal chain Q, target distribution $\pi_{T(t)}$ (i.e. the Gibbs distribution) and temperature schedule T(t), is a non-homogeneous Markov chain with generator at time t to be

$$M_{2,t}(x,y) = \begin{cases}
 \max \left\{ \frac{\pi_{T(t)}(y)Q(y,x)}{\pi_{T(t)}(x)Q(x,y)}, 1 \right\} Q(x,y), & \text{for } x \neq y, \\
 -\sum_{y; \ y \neq x} M_{2,t}(x,y), & \text{for } x = y.
 \end{cases}$$

Accelerated simulated annealing

Definition

Accelerated simulated annealing, with proposal chain Q, target distribution $\pi_{T(t)}$ (i.e. the Gibbs distribution) and temperature schedule T(t), is a non-homogeneous Markov chain with generator at time t to be

$$M_{2,t}(x,y) = \begin{cases}
 \max \left\{ \frac{\pi_{T(t)}(y)Q(y,x)}{\pi_{T(t)}(x)Q(x,y)}, 1 \right\} Q(x,y), & \text{for } x \neq y, \\
 -\sum_{y; \ y \neq x} M_{2,t}(x,y), & \text{for } x = y.
 \end{cases}$$

• Recall the dynamics of classical simulated annealing:

$$M_{1,t}(x,y) = \min \left\{ \frac{\pi_{T(t)}(y)Q(y,x)}{\pi_{T(t)}(x)Q(x,y)}, 1 \right\} Q(x,y) \text{ for } x \neq y.$$

- Preliminaries
- 2 Accelerated Metropolis-Hastings and simulated annealing algorithms
 - (i). Definitions
 - (ii). Main results
- 3 Summary

Main results

• The general message is that we can operate **faster** cooling schedule on $M_{2,t}$ than $M_{1,t}$!

Main results

- The general message is that we can operate **faster** cooling schedule on $M_{2,t}$ than $M_{1,t}$!
- Similar to the classical case, the convergence behaviour of $M_{2,t}$ depends critically on a constant we call c_{M_2} .

Theorem (Choi '19)

• Case 1: $c_{M_2} > 0$ The Markov chain generated by $M_{2,t}$ converges to π_{∞} in total variation distance if for any $\epsilon > 0$,

$$T(t) = \frac{c_{M_2} + \epsilon}{\ln(t+1)}.$$

Theorem (Choi '19)

• Case 2: $c_{M_2} \leq 0$

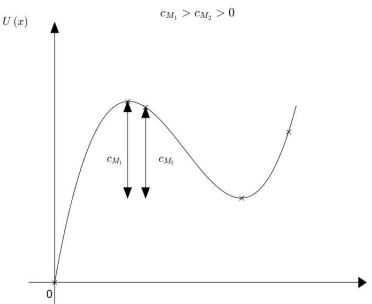
The Markov chain generated by $M_{2,t}$ converges to π_{∞} in total variation distance if T(t) satisfies

$$\lim_{t \to \infty} \left(\frac{d}{dt} T(t) \right) \frac{e^{\frac{c_{M_2}}{T(t)}}}{T(t)^2} = 0.$$

Examples of fast cooling schedule that satisfy the above requirement are

- **1.** (power law cooling) $T(t) = (t+1)^{-\alpha}$, where $\alpha \in (0,1)$.
- **2.** (powers of logarithmic cooling) $T(t) = (\log(t+1))^{-k}$, where k > 1.
- 3. $T(t) = (t+1)^{-\alpha} (\log(t+1))^{-1}$, where $\alpha \in (0,1)$.

What is c_{M_2} ?



What is c_{M_2} ?

• $c_{M_1} := \max_{x,y \in \mathcal{X}} \{H(x,y) - U(x) - U(y)\} = \text{largest hill to climb from a local minimum to a global minimum.}$

What is c_{M_2} ?

- $c_{M_1} := \max_{x,y \in \mathcal{X}} \{H(x,y) U(x) U(y)\} = \text{largest hill to climb from a local minimum to a global minimum.}$
- $c_{M_2} := \max_{x,y \in \mathcal{X}} \left\{ \max_{z,w \in \gamma^{x,y}, \ z = \gamma^{x,y}_i, w = \gamma^{x,y}_{i+1} \text{ for some } i} U(z) \land U(w) U(x) U(y) \right\} \approx \text{second largest hill to climb from a local minimum to a global minimum}$
- $c_{M_1} \ge c_{M_2}$. When U has distinct values, $c_{M_1} > c_{M_2}$.

Main results

Theorem (X^{M_2} effectively escapes local minimum while X^{M_1} may get trapped under fast cooling)

Suppose that x is a local minimum of U and under any cooling schedule,

$$\mathbb{P}_x(X_t^{M_2} = x \ \forall t \ge 0) = 0.$$

Under cooling schedule of the form

$$T(t) = \frac{d}{\log(t+1)},$$

where $d < c_{M_1}$, then

$$\mathbb{P}_x(X_t^{M_1} = x \ \forall t \ge 0) > 0.$$

- Preliminaries
- 2 Accelerated Metropolis-Hastings and simulated annealing algorithms
- 3 Summary

Summary

- Propose an accelerated simulated annealing $M_{2,t}$
 - ✓ Convergence guarantee under **fast** cooling that depends on c_{M_2} . The optimal cooling schedule can be faster than logarithmic cooling depending on Q and U.
 - ✓ With probability 1 it will escape local minimum even under fast cooling
 - \times Relatively hard to simulate

Summary

- Propose an accelerated simulated annealing $M_{2,t}$
 - ✓ Convergence guarantee under **fast** cooling that depends on c_{M_2} . The optimal cooling schedule can be faster than logarithmic cooling depending on Q and U.
 - ✓ With probability 1 it will escape local minimum even under fast cooling
 - \times Relatively hard to simulate
- Classical simulated annealing $M_{1,t}$
 - \times Convergence guarantee under **slow** cooling that depends on c_{M_1}
 - × With positive probability it can get stuck in local minimum under fast cooling
 - ✓ Relatively easy to simulate

Thank you! Question(s)?